by Thomas H. Huxley

The question of questions for mankind - the problem which underlies all others, and is more deeply interesting than any other - is the ascertainment of the place which Man occupies in nature and of his relations to the universe of things. Whence our race has come; what are the limits of our power over nature, and of nature's power over us; to what goal we are tending; are the problems which present themselves anew and with undiminished interest to every man born into the world. Most of us, shrinking from the difficulties and dangers which beset the seeker after original answers to these riddles, are contented to ignore them altogether, or to smother the investigating spirit under the feather-bed of respected and respectable tradition. But, in every age, one or two restless spirits, blessed with that constructive genius, which can only build on a secure foundation, or cursed with the spirit of mere scepticism, are unable to follow in the well-worn and comfortable track of their forefathers and contemporaries, and unmindful of thorns and stumbling-blocks, strike out into paths of their own. The sceptics end in the infidelity which asserts the problem to be insoluble, or in the atheism which denies the existence of any orderly progress and governance of things: the men of genius propound solutions which grow into systems of Theology or of Philosophy, or veiled in musical language which suggests more than it asserts, take the shape of the Poetry of an epoch.

Each such answer to the great question, invariably asserted by the followers of its propounder, if not by himself, to be complete and final, remains in high authority and esteem, it may be for one century, or it may be for twenty: but, as invariably, Time proves each reply to have been a mere approximation to the truth-tolerable chiefly on account of the ignorance of those by whom it was accepted, and wholly intolerable when tested by the larger knowledge of their successors. In a well-worn metaphor, a parallel is drawn. between the life of man and the metamorphosis of the caterpillar into the butterfly; but the comparison may be more just as well as more novel, if for its former term we take the mental progress of the race. History shows that the human mind, fed by constant accessions of knowledge, periodically grows too large for its theoretical coverings, and bursts them asunder to appear in new habiliments, as the feeding and growing grub, at intervals, casts its too narrow skin and assumes another, itself but temporary. Truly the imago state of Man seems to be terribly distant, but every moult is a step gained, and of such there have been many. Since the revival of learning, whereby the Western races of Europe were enabled to enter upon that progress towards true knowledge, which was commenced by the philosophers of Greece, but was almost arrested in subsequent long ages of intellectual stagnation, or, at most, gyration, the human larva has been feeding vigorously, and moulting in proportion.

A skin of some dimension was cast in the 16th century, and another towards the end of the 18th, while, within the last fifty years, the extraordinary growth of every department of physical science has spread among us mental food of so nutritious and stimulating a character that a new ecdysis seems imminent. But this is a process not unusually accompanied by many throes and some sickness and debility, or, it may be, by graver disturbances; so that every good citizen must feel bound to facilitate the process, and even if he have nothing but a scalpel to work withal, to ease the cracking integument to the best of his ability. In this duty lies my excuse for the publication of these essays. For it will be admitted that some knowledge of man's position in the animate world is an indispensable preliminary to the proper understanding of his relations to the universe; and this again resolves itself, in the long run, into an inquiry into the nature and the closeness of the ties which connect him with those singular creatures whose history 1 has been sketched in the preceding pages. The importance of such an inquiry is indeed intuitively manifest. Brought face to face with these blurred copies of himself, the least thoughtful of men is conscious of a certain shock, due perhaps, not so much to disgust at the aspect of what looks like an insulting caricature, as to the awakening of a sudden and profound mistrust of time-honoured theories and strongly-rooted prejudices regarding his own position in nature, and his relations to the underworld of life: while that which remains a dim suspicion for the unthinking, becomes a vast argument, fraught with the deepest consequences, for all who are acquainted with the recent progress of the anatomical and physiological sciences.

I now propose briefly to unfold that argument, and to set forth, in a form intelligible to those who possess no special acquaintance with anatomical science, the chief facts upon which all conclusions respecting the nature and the extent of, the bonds which connect man with the brute world must be based: I shall then indicate the one immediate conclusion which, in my judgment, is justified by those facts, and I shall finally

discuss the bearing of that conclusion upon the hypotheses which have been entertained respecting the Origin of Man. The facts to which I would first direct the reader's attention, though ignored by many of the professed instructors of the public mind, are easy of demonstration and are universally agreed to by men of science; while their significance is so great, that whoso has duly pondered over them will, I think, find little to startle him in the other revelations of Biology. I refer to those facts which have been made known by the study of Development. It is a truth of very wide, if not of universal, application, that every living creature commences its existence under a form different from, and simpler than, that which it eventually attains. The oak is a more complex thing than the little rudimentary plant contained in the acorn; the caterpillar is more complex than the egg; the butterfly than the caterpillar; and each of these beings, in passing from its rudimentary to its perfect condition, runs through a series of changes, the sum of which is called its Development.

In the higher animals these changes are extremely complicated; but, within the last half century the labours of such men as Yon Baer, Rathke, Reichert, Bischoff, and Remak, have almost completely unravelled them, so that the successive stages of development which are exhibited by a Dog, for example, are now as well known to the embryologist as are the steps of the metamorphosis of the silk-worm moth to the schoolboy. It will be useful to consider with attention the nature and the order of the stages of canine development, as an example of the process in the higher animals generally. The dog, like all animals, save the very lowest (and further inquiries may not improbably remove the apparent exception), commences its existence as an egg: as a body which is, in every sense, as much an egg as that of a hen, but is devoid of that accumulation of nutritive matter which confers upon the bird's egg its exceptional size and domestic utility; and wants the shell, which would not only be useless to an animal incubated within the body of its parent, but would cut it off from access to the source of that nutriment which the young creature requires, but which the minute egg of the mammal does not contain within itself.

The Dog's egg is, in fact, a little spheroidal bag, formed of a delicate transparent membrane called the vitelline membrane, and about 1/130th to 1/120th of an inch in diameter. It contains a mass of viscid nutritive matter-the yelk-within which is enclosed a second much more delicate spheroidal bag, called the germinal vesicle. In this, lastly, lies a more solid rounded body, termed the germinal spot. The egg, or Ovum, is originally formed within a gland, from which, in due season, it becomes detached, and passes into the living chamber fitted for its protection and maintenance during the protracted process of gestation. Here, when subjected to the required conditions, this minute and apparently insignificant particle of living matter becomes animated by a new and mysterious activity. The germinal vesicle and spot cease to be discernible (their precise fate being one of the yet: unsolved problems of embryology), but the yelk becomes circumferentially indented, as if an invisible knife had been drawn round it, and thus appears divided into two hemispheres. By the repetition of this process in various planes, these hemispheres become subdivided, so that four segments are produced; and these, in like manner, divide and subdivide again, until the whole yelk is converted into a mass of granules, each of which consists of a minute spheroid of yelk-substance, inclosing a central particle, the so-called nucleus.

Nature, by this process, has attained much the same result as that which a human artificer arrives at by his operations in a brick-field. She takes the rough plastic material of the yelk and breaks it up into well-shaped tolerably even-sized masses-handy for building up into any part of the living edifice. Next, the mass of organic bricks, or cells as they are technically called, thus formed, acquires an orderly arrangement, becoming converted into a hollow spheroid with double walls. Then, upon one side of this spheroid, appears a thickening, and, by and bye, in the centre of the area of thickening, a straight shallow groove marks the central line of the edifice which is to be raised, or, in other words, indicates the position of the middle line of the body of the future dog. The substance bounding the groove on each side next rises up into a fold, the rudiment of the side with of that long cavity, which will eventually lodge the spinal marrow and the brain; and in the floor of this chamber appears a solid cellular cord, the so-called notochord.

One end of the enclosed cavity dilates to form the head, the other remains narrow, and eventually becomes the tail; the side walls of the body are fashioned out of the downward continuation of, the walls of the groove; and from them, by and bye, grow out little buds which, by degrees, assume the shape of limbs. Watching the fashioning process stage by stage, one is forcibly reminded of the modeller in clay. Every part, every organ, is at first, as it were pinched up rudely, and sketched out in the rough; then shaped more

accurately; and only, at last, receives the touches which stamp its final character. Thus, at length, the young puppy assumes' such a form. In this condition is has a disproportionately large head, as dissimilar to that of a dog as the bud-like limbs are unlike his legs.

The remains of the yelk, which have not yet been applied to the nutrition and growth of the young animal, are contained in a sac attached to the rudimentary intestine, and termed the yelk sac, or umbilical vesicle. Two membranous bags, intended to subserve respectively the protection and nutrition of the young creature, have been developed from the skin and from the under and hinder surface of the body; the former, the so- called amnion, is a sac filled with fluid, which invests the whole body of the embryo, and plays the part of a sort of water-bed for it; the other, termed the allantois, grows out, loaded with blood-vessels, from the ventral region, and eventually applying itself to the walls of the cavity, in which the developing organism is contained, enables these vessels to become' the channel by which the stream of nutriment, required to supply the wants of the offspring, is furnished to it by the parent. The structure which is developed by the interlacement of the vessels of the offspring with those of the parent, and by means of which the former is enabled to receive nourishment and to get rid of effete matters, is termed the Placenta.

It would be tedious, and it is unnecessary for my present purpose, to trace the process of development further; suffice it to say, that, by a long and gradual series of changes, the rudiment here depicted and described, becomes a puppy, is born, and then, by still slower and less perceptible steps, passes into the adult Dog. There is not much apparent resemblance between a barn-door Fowl and the Dog who protects the farm-yard. Nevertheless the student of development finds, not only that the chick commences its existence as an egg, primarily identical, in all essential respects, with that of the Dog, but that the yelk of this egg undergoes division -that the primitive groove arises, and that the contiguous parts of the germ are fashioned, by precisely similar methods, into a young chick, which, at one stage of its existence, is so like the nascent Dog, that ordinary inspection would hardly distinguish the two. The history of the development of any other vertebrate animal, Lizard, Snake, Frog, or Fish, tells the same story. There is always, to begin with, an egg having the same essential structure as that of the Dog: - the yelk of that egg always undergoes division, or segmentation as it is often called: the ultimate products of that segmentation constitute the building materials for the body of the young animal; and this is built up round a primitive groove, in the floor of which a notochord is developed.

Furthermore, there is a period in which the young of all these animals resemble one another, not merely in outward form, but in all essentials of structure, so closely, that the differences between them are inconsiderable, while, in their subsequent course they diverge more and more widely from one another. And it is a general law, that, the more closely any animals resemble one another in adult structure, the longer and the more intimately do their embryos resemble one another: so that, for example, the embryos of a Snake and of a Lizard remain like one another longer than do those of a Snake and of a Bird; and the embryo of a Dog and of a Cat remain like one another for a far longer period than do those of a Dog and a Bird; or of a Dog and an Opossum; or even than those of a Dog and a Monkey. Thus the study of development affords a clear test of closeness of structural affinity, and one turns with impatience to inquire what results are yielded by the study of the development of Man. Is he something apart? Does he originate in a totally different way from Dog, Bird, Frog, and Fish, thus justifying those who assert him to have no place in nature and no real affinity with the lower world of animal life?

Or does he originate in a similar germ, pass through the same slow and gradually progressive modifications, depend on the same contrivances for protection and nutrition, and finally enter the world by the help of the same mechanism? The reply is not doubtful for a moment, and has not been doubtful any time these thirty years. Without question, the mode of origin and the early stages of the development of man are identical with those of the animals immediately below him in the scale:-without a doubt, in these respects, he is far nearer the Apes, than the Apes are to the Dog. The Human ovum is about 1/125th of an inch in diameter, and might be described in the same terms as that of the Dog.

It leaves the organ in which it is formed in a similar fashion and enters the organic chamber prepared for its reception in the same way, the conditions of its development being in all respects the same. It has not yet been possible (and only by some are chance can it ever be possible) to study the human ovum in so early a develop- mental stage as that of yelk division, but there is every reason to conclude that the changes it

undergoes are identical with those exhibited by the ova of other vertebrated animals; for the formative materials of which the rudimentary human body is composed, in the earliest conditions in which it has been observed, are the same as those of other animals. Some of these earliest stages are figured above and, as will be seen, they are strictly comparable to the very early states of the Dog; the marvellous correspondence between the two which is kept up, even for some time, as development advances, becoming apparent by the simple comparison of the figures with those on page 86. Indeed, it is very long before the body of the young human being can be readily discriminated from that of the young puppy; but, at a tolerably early period, the two become distinguishable by the different form of their adjuncts, the yelk-sac and the allantois. The former, in the Dog, be- comes long and spindle-shaped, while in Man it remains spherical: the latter, in the Dog, attains an extremely large size, and the vascular processes which are developed from it and eventually give rise to the formation of the placenta (taking root, as it were, in the parental organism, so as to draw nourishment therefrom, as the root of a tree extracts it from the soil) are arranged in an encircling zone, while in Man, the allantois remains comparatively small, and its vascular rootlets are eventually restricted to one disk-like spot.

Hence, while the placenta of the Dog is like a girdle, that of Man has the cake-like form, indicated by the name of the organ. But, exactly in those respects in which the developing Man differs from the Dog, he resembles the ape, which, like man, has a spheroidal yelk-sac and a discoidal, sometimes partially lobed, placenta. So that it is only quite in the later stages of development that the young human being presents marked differences from the young ape, while the latter departs as much from the dog in its development, as the man does. Startling as the last assertion may appear to be, it is demonstrably true, and it alone appears to me sufficient to place beyond all doubt the structural unity of man with the rest of the animal world, and more particularly and closely with the apes. Thus, identical in the physical processes by which he originates-identical in the early stages of his formation-identical in the mode of his nutrition before and after birth, with the animals which lie immediately below him in the scale- Man, if his adult and perfect structure be compared with theirs, exhibits, as might be expected, a marvellous likeness of organization. He resembles them as they resemble one another-he differs from them as they differ from one another. -And, though these differences and resemblances cannot be weighed and measured, their value may be readily estimated; the scale or standard of judgment, touching that value being afforded and expressed by the system of classification of animals now current among zoologists.

A careful study of the resemblances and differences presented by animals has, in fact, led naturalists to arrange them into groups, or assemblages, all the members of each group presenting a certain amount of definable resemblance, and the number of points of similarity being smaller as the group is larger and vice versa. Thus, all creatures which agree only in presenting the few distinctive marks of animality form the Kingdom ANIMALIA. The numerous animals which agree only in possessing the special characters of Vertebrates form one Sub-kingdom of this Kingdom. Then the Sub-kingdom VERTEBRATA is subdivided into the five Classes, Fishes, Amphibians, Reptiles, Birds, and Mammals, and these into smaller groups called Orders... these into Families and Genera... while the last are finally broken up into the smallest assemblages, which are distinguished by the possession of constant, not-sexual, characters. These ultimate groups are Species. Every year tends to bring about a greater uniformity of opinion throughout the zoological world as to the limits and characters of these groups, great and small. At present, for example, no one has the least doubt regarding the characters of the classes Mammalia, Aves, or Reptilia; nor does the question arise whether any thoroughly well-known animal should be placed in one class or the other.

Again, there is a very general agreement respecting the characters and limits of the orders of Mammals, and as to the animals which are structurally necessitated to take a place in one or another order. No one doubts, for example, that the Sloth and the Anteater, the Kangaroo and the Opossum, the Tiger and the Badger, the Tapir and the Rhinoceros, are respectively members of the same orders. These successive pairs of animals may, and some do, differ from one another immensely, in such matters as the proportions and structure of their limbs; the number of their dorsal and lumbar vertebrae; the adaptation of their frames to climbing, leaping, or running; the number and form of their teeth; and the characters of their skulls and of the contained brain. But, with all these differences, they are so closely connected in all the more important and fundamental characters of their organization, and so distinctly separated by these same characters from other animals, that zoologists find it necessary to group them together as members of one order. And any new animal were discovered, and were found to present no greater difference from the Kangaroo or from

the Opossum, for example, than these animals do from one another, the zoologist would not only be logically compelled to rank it in the same order with these, but he would not think of doing otherwise.

Bearing this obvious course of zoological reasoning in mind, let us endeavour for a moment to disconnect our thinking selves from the mask of humanity; let us imagine ourselves scientific Saturnians, if you will, fairly acquainted with such animals as now inhabit the Earth, and employed in discussing the relations they bear to a new and singular "erect and featherless biped," which some enterprising traveller, overcoming the difficulties of space and gravitation, has brought from that distant planet for our inspection, well preserved, may be, in a cask of rum. We should all, at once, agree upon placing him among the mammalian vertebrates; and his lower jaw, his molars, and his brain, would leave no room for doubting the systematic position of the new genus among those mammals, whose young are nourished during gestation by means of a placenta, or what are called the "placental mammals." Further, the most superficial study would at once convince us that, among the orders of placental mammals, neither the Whales, nor the hoofed creatures, nor the Sloths and Anteaters, nor the carnivorous Cats, Dogs, and Bears, still less the Rodent Rats and Rabbits, or the Insectivorous Moles and Hedgehogs, or the Bats, could claim our Homo, as one of themselves. There would remain then but one order for comparison, that of the Apes (using the word in , its broadest sense), and the question for discussion-would narrow itself to this-is Man so different from any of these Apes that he must form an order by himself?

Or does he differ less from them than they differ from one another, and hence must take his place in the same order with them? Being happily free from all real, or imaginary, personal interest in the results of the inquiry thus set afoot, we should proceed to weigh the arguments on one side and on the other, with as much judicial calmness as if the question related to a new Opossum. We should endeavour to ascertain, without seeking either to magnify or diminish them, all the characters by which our new Mammal differed from the Apes; and if we found that these were of less structural value than those which distinguish certain members of the Ape order from others universally admitted to be of the same order, we should undoubtedly place the newly discovered tellurian genus with them. I now proceed to detail the facts which seem to me to leave us no choice but to adopt the last-mentioned course. It is quite certain that the Ape which most nearly approaches man in the totality of its organisation, is either the Chimpanzee or the Gorilla; and as it makes no practical difference, for the purposes of my present argument, which is selected for comparison, on the one hand, with Man, and on the other hand, with the rest of the Primates, **2**

I shall select the latter (so far as its organisation is known)-as a brute now so celebrated in prose and verse, that all must have heard of him, and have formed some conception of his appearance. I shall take up as many of the most important points of difference between man and this remarkable creature, as the space at my disposal will allow me to discuss, and the necessities of the argument demand; and I shall inquire into the value and magnitude of these differences, when placed side by side with those which separate the Gorilla from other animals of the same order. In the general proportions of the body and limbs there is a remarkable difference between the Gorilla and Man, which at once strikes the eye. The Gorilla's brain-case is smaller, its trunk larger, its lower limbs shorter, its upper limbs longer in proportion than those of Man. I find that the vertebral column of a full-grown Gorilla, in the Museum of the Royal College of Surgeons, measures 27 inches along its anterior curvature, from the upper edge of the atlas, or first vertebra of the neck, to the lower extremity of the sacrum; that the arm, without the hand, is 31 1/2 inches long; that the leg, without the foot, is 26 1/2 inches long; that the hand is 9 3/4 inches long; the foot 11 1/4 inches long. In other words, taking the length of the spinal column as 100, the arm equals 115, the leg 96, the hand 36, and the foot 41. In the skeleton of a male Bosjesman, in the same collection, the proportions, by the same measurement, to the spinal column, taken as 100, are- the arm 78, the leg 110, the hand 26, and the foot 32.

In a woman of the same race the arm is 83, and the leg 120, the hand and foot remaining; the same. In a European skeleton I find the arm to be 80, the leg 117, the hand 26, the foot 35. Thus the leg is not so different as it looks at first sight, in its proportion to the spine in the Gorilla and in the Man-being very slightly shorter than the spine in the former, and between and longer than the spine in the latter. The foot is longer and the hand much longer in the Gorilla; but the great difference is caused by the arms, which are very much longer than the spine in the Gorilla, very much shorter than the spine in the Man. The question, now arises how are the other Apes related to the Gorilla in these respects- taking the length of the spine, measured in the same way, at 100. In an adult Chimpanzee, the arm is only 96, the leg 90, the hand 43, the

foot 39 -so that the hand and the leg depart more from the human proportion and the arm less, while the foot is about the same as in the Gorilla. In the Orang, the arms are very much longer than in the Gorilla (122), while the legs are shorter (88); the foot is longer than the hand (52 and 48), and both are much longer in proportion to the spine. In the other man-like Apes again, the Gibbons, these proportions are still further altered; the length of the arms being to that of the spinal column as 19 to 11; while the legs are also a third longer than the spinal column, so as to be longer than in Man, instead of shorter.

The hand is half as long as the spinal column, and the foot, shorter than the hand, is about 5/11ths of the length of the spinal column. Thus Hylobates is as much longer in the arms than the Gorilla, as the Gorilla is longer in the arms than Man; while, on the other hand, it is as much longer in the legs than the Man, as the Man is longer in the legs than the Gorilla, so that it contains within itself the extremest deviations from the average length of both pairs of limbs. **3** The Mandrill presents a middle condition, the .arms and legs being nearly equal in length, and both being shorter than the spinal column; while hand and foot have nearly the same proportions to one another and to the spine, as in Man. In the Spider Monkey (Ateles) the leg is longer than the spine, and the arm than the leg; and, finally, in that remarkable Lemurine form, the Indri (Lichanotus), the leg is about as long as the spinal column, while the arm is not more than 11/18 of its length; the hand having rather less and the foot rather more, than one third the length of the spinal column These examples might be greatly multiplied, but they suffice to show that, in whatever proportion of its limbs the Gorilla differs from Man, the other Apes depart still more widely from the Gorilla and that, consequently, such differences of proportion can have no ordinal value.

We may next consider the differences presented by the trunk, consisting of the vertebral column, or backbone, and the ribs and pelvis, or bony hip-basin, which are connected with it, in Man and in the Gorilla respectively. In Man, in consequence partly of the disposition of the articular surfaces of the vertebrae, and largely of the elastic tension of some of the fibrous bands, or ligaments, the spinal column, as a whole, has an elegant S-like curvature, being convex forwards in the neck, concave in the back, convex in the loins, or lumbar region, and concave again in the sacral region; an arrangement which gives much elasticity to the whole backbone, and diminishes the jar communicated to the spine, and through it to the head, by locomotion in the erect position. Furthermore, under ordinary circumstances, Man has seven vertebrae in his neck, which are called cervical; twelve succeed these, bearing ribs and forming the upper part of the back, whence they are termed dorsal; five lie in the loins, bearing no distinct, or free, ribs, and are called lumbar; five, united together into a great bone, excavated in front, solidly wedged in between the hip bones, to form the back of the pelvis, and known by the name of the sacrum, succeed these; and finally, three or four little more or less movable bones, so small as to be insignificant, constitute the coccyx or rudimentary tail.

In the Gorilla, the vertebral column is similarly divided into cervical, dorsal, lumbar, sacral, and coccygeal vertebrae, and the total number of cervical and dorsal vertebrae, taken together, is the same as in Man; but the development of a pair of ribs to the first lumbar vertebra, which is an exceptional occurrence in Man, is the rule in the Gorilla; and hence, as lumbar are distinguished from dorsal vertebrae only by the presence or absence of free ribs the seventeen "dorso-lumbar" vertebrae of the Gorilla are divided into thirteen ; dorsal and four lumbar, while in Man they are twelve dorsal and five lumbar. Not only, however, does Man occasionally possess thirteen pair of ribs, 4 but the Gorilla sometimes has fourteen pairs, while an Orangutan-skeleton in the Museum of the Royal College of Surgeons has twelve dorsal and five lumbar vertebrae, as in Man. Cuvier notes the same number in a Hylobates. On the other hand, among the lower Apes, many possess twelve dorsal and six or seven lumbar vertebrae; the Douroucouli has fourteen dorsal and eight lumbar, and a Lemur (Stenops tardigradus) has fifteen dorsal and nine lumbar vertebrae. The vertebral column of the Gorilla, as a whole, differs from that of Man in the less marked character of its curves, especially in the slighter convexity of the lumbar region. Nevertheless, the curves are present, and are quite obvious in young skeletons of the Gorilla and Chimpanzee which have been prepared without removal of the ligaments. In young Orangs similarly preserved on the other hand, the spinal column is either straight, or even concave forwards, throughout the lumbar region. Whether we take these characters then, or such minor ones as those which are derivable from the proportional length of the spines of the cervical vertebrae, and the like, there is no doubt whatsoever as to the marked difference between Man and the Gorilla; but there is as little, that equally marked differences, of the very same order, obtain between the Gorilla and the lower Apes.

The Pelvis, or bony girdle of the hips, of Man is a strikingly human part of his organisation; the expanded haunch bones affording support for his viscera during his habitually erect posture, and giving space for the attachment of the great muscles which enable him to assume and to preserve that attitude. In these respects the pelvis of the Gorilla differs very considerably from his. But go no lower than the Gibbon, and see how vastly more he differs from the Gorilla than the latter does from Man, even in this structure. Look at the flat, narrow haunch bones-the long and narrow passage-the coarse, outwardly curved, ischiatic prominences on which the Gibbon habitually rests, and which are coated by the so-called "callosities," dense patches of skin, wholly absent in the Gorilla, in the Chimpanzee, and in the Orang, as in Man! In the lower Monkeys and in the Lemurs the difference becomes more striking still, the pelvis acquiring an altogether quadrupedal character. But now let us turn to a nobler and more characteristic organ-that by which the human frame seems to be, and indeed is, so strongly distinguished from all others, -I mean the skull. The differences between a Gorilla's skull and a Man's are truly immense.

In the former, the face, formed largely by the massive jaw-bones, predominates over the brain-case, or cranium proper: in the latter, the proportions of the two are reversed. In the Man, the occipital foramen, through which passes the great nervous cord connecting the brain with the nerves of the body, is placed just behind the centre of the base of the skull, which thus becomes evenly balanced in the erect posture; in the Gorilla, it lies in the posterior third of that base. In the Man, the surface of the skull is comparatively smooth, and the supraciliary ridges or brow prominences usually project but little-while, in the Gorilla, vast crests are developed upon the skull, and the brow ridges over-hang the cavernous orbits, like great penthouses. Sections of the skulls, however, show that some of the apparent defects of the Gorilla's cranium arise, in fact, not so much from deficiency of brain-case as from excessive development of the parts of the face.

The cranial cavity is not ill-shaped, and the forehead is not truly flattened or very retreating in its really well-formed curve being simply disguised by the mass of bone which is built up against it. But the roofs of the orbits rise more obliquely into the cranial cavity, thus diminishing the space for the lower part of the anterior lobes of the brain, and the absolute capacity of the cranium is far less than that of Man. So far as I am aware, no human cranium belonging to an adult man has yet been observed with a less cubical capacity than 62 cubic inches, the smallest cranium observed in any race of men by Morton, measuring 63 cubic inches; while, on the other hand, the most, capacious Gorilla skull yet measured has a content j of not more than 34 1/3 cubic inches. Let us assume, for simplicity's sake, that the lowest Man's skull has twice the capacity of that of the highest Gorilla. **5**

No doubt, this is a very striking difference, but it loses much of its apparent systematic value, when viewed by the light of certain other equally indubitable facts respecting cranial capacities. The first of these is, that the difference in the volume of the cranial cavity of different races of mankind is far greater, absolutely, than that between the lowest Man and the highest Ape, while, relatively, it is about the same. For the largest human skull measured by Morton contained 114 cubic inches, that is to say, had very nearly double the capacity of the smallest; while its absolute preponderance, of 52 cubic inches-is far greater than that by which the lowest adult male human cranium surpasses the largest of the Gorillas (62-34 = 27 1/2). Secondly, the adult crania of Gorillas which have as yet been measured differ among themselves by nearly one-third, the maxi- mum capacity being 34.5 cubic inches, the mini- mum 24 cubic inches; and) thirdly, after making all due allowance for difference of size, the cranial capacities of some of the lower Apes fall nearly as much, relatively, below those of the higher Apes as the latter fall below Man. Thus, even in the important matter of cranial capacity, Men differ more widely from one another than they do from the Apes; while the lowest Apes differ as much, in proportion, from the highest, as the latter does from Man.

The last proposition is still better illustrated by the study of the modifications which other parts of the cramum undergo in the Simian series. It is the large proportional size of the facial bones and the great projection of the jaws which confer upon the Gorilla's skull its small facial angle and brutal character. But if we consider the proportional size of the facial bones to the skull proper only, the little Chrysothrix differs very widely from the Gorilla, and, in the same way, as Man does; while the Baboons (Cynocephalus) exaggerate the gross proportions of the muzzle of the great Anthropoid, so that its visage looks mild and human by comparison with theirs. The difference between the Gorilla and the Baboon is even greater than

it appears at first sight; for the great facial mass of the former is largely due to a downward development of the jaws; an essentially human character, superadded upon that almost purely forward, essentially brutal development of the same parts which characterizes the Baboon, and yet more remarkably distinguishes the Lemur. Similarly, the occipital foramen of Mycetes, and still more of the Lemurs, is situated completely in the posterior face of the skull, or as much further back than that of the Gorilla, as that of the Gorilla is further back than that of Man; while, as if to render patent the futility of the attempt to base any broad classificatory distinction on such a character, the same group of Platyrhine, or American monkeys, to which the Mycetes belongs, contains the Ohrysothrix, whose occipital foramen is situated far more forward than in any other ape, and nearly approaches the position it holds in Man.

Again, the Orang's skull is as devoid of excessively developed supraciliary prominences as a Man's, though some varieties exhibit great crests elsewhere; and in some of the Cebine apes and in the Chrysothrix, the cranium is as smooth and rounded as that of Man himself. What is true of these leading characteristics of the skull, holds good, as may be imagined, of all minor features; so that for every constant difference between the Gorilla's skull and the Man's a similar constant difference of the same order (that is to say, consisting in excess or defect of the same quality) may be found between the Gorilla's skull and that of some other ape. So that, for the skull, no less than for the skeleton in general, the proposition holds good, that the differences between Man and the Gorilla are of smaller value than those between the Gorilla and some other Apes. In connection with the skull, I may speak of the teeth-organs which have a peculiar classificatory value, and whose resemblances and differences of number, form, and succession, taken as a whole, are usually regarded as more trustworthy indicators of affinity than any others. Man is provided with two sets of teeth-milk teeth and permanent teeth. The former consist of four incisors, or cutting teeth; two canines, or eye-teeth; and four molars or grinders, in each jaw, making twenty in all.

The latter comprise four incisors, two canines, four small grinders, called premolars or false molars, and six large grinders, or true molars in each jaw-making, thirty-two in all. The internal incisors are larger than the external pair, in the upper jaw, smaller than the external pair, in the lower jaw. The crowns of the upper molars exhibit four cusps, or blunt-pointed elevations, and a ridge crosses the crown obliquely, from the inner, anterior cusp to the outer, posterior cusp. The anterior lower molars have five cusps, three external and two internal. The premolars have two cusps, one internal and one external, of which the outer is the higher.

In all these respects the dentition of the Gorilla may be described in the same terms as that of Man; but in other matters it exhibits many and important differences. Thus, the teeth of man constitute a regular and even senes-without any break and without any marked projection of one tooth above the level of the rest; a peculiarity which, as Cuvier long ago showed, is shared by no other mammal save one -as different a creature from man as can well be imagined-namely, the long extinct Anoplotherium. The teeth of the Gorilla, on the contrary, exhibit a break, or interval, termed the diastema, in both jaws: in front of the eyetooth, or between it and the outer incisor, in the upper jaw; behind the eye-tooth, or between it and the front false molar, in the lower jaw. Into this break in the series, in each jaw, fits the canine of the opposite jaw; the size of the eye-tooth in the Gorilla being so great that it projects, like a tusk, far beyond the general level of the other teeth. The roots of the false molar teeth of the Gorilla, again, are more complex than in Man, and the proportional size of the molars is different.

The Gorilla has the crown of the hindmost grinder of the lower jaw more complex, and the order of eruption of the permanent teeth is different; the permanent canines making their appearance before the second and third molars in Man, and after them in the Gorilla. Thus, while the teeth of the Gorilla closely resemble those of Man in number, kind, and in the general pattern of their crowns, they exhibit marked differences from those of Man in secondary respects, such as relative size, number of fangs, and order of appearance. But, if the teeth of the Gorilla be compared with those of an Ape, no further removed from it than a Cynocephalus, or Baboon, it will be found that differences and resemblances of the same order are easily observable; but that many of the points in which the Gorilla resembles Man are those in which it differs from the Baboon; while various respects in which it differs from Man are exaggerated in the Cynocephalus.

The number and the nature of the teeth remain the same in the Baboon as in the Gorilla and in Man. But the pattern of the Baboon's upper molars is quite different from that described above, the canines are proportionally longer and more knife- like; the anterior premolar in the lower jaw is specially modified; the posterior molar of the lower jaw is still larger and more complex than in the Gorilla. Passing from the old-world Apes to those of the new world, we meet with a change of much greater importance than any of these. In such a genus as Cebus, for example, it will be found that while in some secondary points, such as the projection of the canines and the diastelna, the resemblance to the great ape is preserved; in other and most important respects, the dentition is extremely different. Instead of 20 teeth in the milk set, there are 24: instead of 32 teeth in the permanent set, there are 36, the false molars being increased from eight to twelve, and in form, the crowns of the molars are very unlike those of the Gorilla, and differ far more widely from the human pattern.

The Marmosets, on the other hand, exhibit the same number of teeth as Man and the Gorilla; but, notwithstanding this, their dentition is very different, for they have four more false molars, like the other American monkeys-but as they have four fewer true molars, the total remains the same, and passing from the American apes to the Lemurs, the dentition becomes still more completely and essentially different from that of the Gorilla. The incisors begin to vary both in number and in form: The molars acquire, more and more, a many-pointed, insectivorous character, and in one Genus, the Aye-Aye (Oheiromys), the canines disappear, and the teeth completely simulate those of a Rodent. Hence it is obvious that, greatly as the dentition of the highest Ape differs from that of Man, it differs far more widely from that of the lower and lowest Apes. Whatever part of the animal fabric-whatever series of muscles, whatever viscera might be selected for comparison-the result would be the same-the lower Apes and the Gorilla would differ more than the Gorilla and the Man. I can not attempt in this place to follow out all these comparisons in detail, and indeed it is unnecessary I should do so. But certain real, or supposed, structural distinctions between man and the apes remain, upon which so much stress has been laid, that they require careful consideration, in order that the true value may be assigned to those which are real, and the emptiness of those which are fictitious may be exposed.

I refer to the characters of the hand, the foot, and the brain. Man has been defined as the only animal possessed of two hands terminating his fore limbs, and of two feet ending his hind limbs, while it has been said that all the apes possess four hands; and he has been affirmed to differ fundamentally from all the apes in the characters of his brain, which alone, it has been strangely asserted and reasserted, exhibits the structures known to anatomists as the posterior lobe, the posterior cornu of the lateral ventricle, and the hippocampus minor.

That the former proposition should have gained general acceptance is not surprising-indeed, at first sight, appearances are much in its favour: but, as for the second, one can only admire the surpassing courage of its enunciator, seeing that it is an innovation which is not only opposed to generally and justly accepted doctrines, but which is directly negatived by the testimony of all original inquirers, who have specially investigated the matter: and that it neither has been, nor can be, supported by a single anatomical preparation. It would, in fact, be unworthy of serious refutation, except for the general and natural belief that deliberate and reiterated assertions must have some foundation. Before we can discuss the first point with advantage we must consider with some attention, and compare together, the structure of the human hand and that of the human foot, so that we may have distinct and clear ideas of what constitutes a hand and what a foot.

The external form of the human hand is familiar enough to everyone. It consists of a stout wrist followed by a broad palm, formed of flesh, and tendons, and skin, binding together four bones, and dividing into four long and flexible digits, or fingers, each of which bears on the back of its last joint a broad and flattened nail. The longest cleft between any two digits is rather less than half as long as the hand. From the outer side of the base of the palm a stout digit goes off, having only two joints instead of three; so short, that it only reaches to a little beyond the middle of the first joint of the finger next it; and further remarkable by its great mobility, in consequence of which it can be directed outwards, almost at a right angle to the rest. This digit is called the "pollex," or thumb; and, like the others, It bears a flat nail upon the back of its terminal joint. In consequence of the proportions and mobility of the thumb, it is what is termed "opposable "; in other words, its extremity can, with the greatest ease be brought into contact with the extremities of any of

the fingers; a property upon which the possibility of our carrying into effect the conceptions of the mind so largely depends. The external form of the foot differs widely from that of the hand; and yet, when closely compared, the two present some singular resemblances.

Thus the ankle corresponds in a manner with the wrist; the sole with the palm; the toes with the fingers; the great toe with the thumb. But the toes, or digits of the foot, are far shorter in pro- portion than the digits of the hand, and are less moveable, the want of mobility being most striking in the great toe-which, again, is very much larger in proportion to the other toes than the thumb to the fingers. In considering this point however, it must not be forgotten that the civilized great toe, confined and cramped from childhood upwards, is seen to a great disadvantage, and that in uncivilized and barefooted people it retains a great amount of mobility, and even some sort of opposability. The Chinese boatmen are said to be able to pull an oar; the artisans of Bengal to weave, and the Carajas to steal fishhooks by its help; though, after all, it must be recollected that the structure of its joints and the arrangement of its bones, necessarily render its prehensile action far less perfect than that of the thumb. But to gain a precise conception of the resemblances and differences of the hand and foot, and of the distinctive characters of each, we must look below the skin, and compare the bony frame work and its motor apparatus in each.

The skeleton of the hand exhibits, in the region which we term the wrist, and which is technically called the carpus-two rows of loosely fitted polygonal bones, four in each row, which are tolerably equal in size. The bones of the first row with the bones of the forearm, form the wrist joint, and are arranged side by side, no one greatly exceeding or overlapping the rest. Three of the bones of the second row of the carpus bear the four long bones which support the palm of the hand. The fifth bone of the same character is articulated in a much more free and moveable manner than the others, with its carpal bone, and forms the base of the thumb. These are called metacarpal bones, and they carry the phalanges or bones of the digits, of which there are two in the thumb, and three in each of the fingers. The skeleton of the foot is very like that of the hand in some respects. Thus there are three phalanges in each of the lesser toes, and only two in the great toe, which answers to the thumb. There is a long bone, termed metatarsal, answering to the metacarpal, for each digit; and the tarsus which corresponds with the carpus, presents four short polygonal bones in a row, which correspond very closely with the four carpal bones of the second row of the hand. In other respects the foot differs very widely from the hand.

Thus the great toe is the longest digit but one; and its metatarsal is far less moveably articulated with the tarsus than the metacarpal of the thumb with the carpus. But a far more important distinction lies in the fact that, instead of four more tarsal bones there are only three; and, that these three are not arranged side by side, or in one row. One of them, the os calcis or heel bone (ca), lies externally, and sends back the large projecting heel; another, the astragalus (as), rests on this by one face, and by another, forms, with the bones of the leg, the ankle joint; while a third face, directed forwards, is separated from the three inner tarsal bones of the row next the metatarsus by a bone called the scaphoid (sc). Thus there is a fundamental difference in the structure of the foot and the hand, observable when the carpus and the tarsus are contrasted: and there are differences of degree noticeable when the proportions and the mobility of the metacarpals and metatarsals, with their respective digits, are compared together. The same two classes of differences become obvious when the muscles of the hand are compared with those of the foot.

Three principal sets of muscles, called "flexors," bend the fingers and thumb, as in clenching the fist, and three sets,-the extensors-extend them, as in straightening the fingers. These muscles are all "long muscles "; that it to say, the fleshy part of each, lying in and being fixed to the bones of the arm, is, at the other end, continued into tendons, or rounded cords, which pass into the hand, and are ultimately fixed to the bones which are to be moved. Thus, when the fingers are bent, the fleshy parts of the flexors of the fingers, placed in the arm, contract, in virtue of their peculiar endowment as muscles; and pulling the tendinous cords, connecting with their ends, cause them to pull down the bones of the fingers towards the palm. Not only are the principal flexors of the fingers and of the thumb long muscles, but they remain quite distinct from one another throughout their whole length. In the foot, there are also three principal flexor muscles of the digits or toes, and three principal extensors; but one extensor and one flexor are short muscles; that is to say, their fleshy parts are not situated in the leg (which corresponds with the arm), but in the back and in the sole of the foot -regions which correspond with the back and the palm of the hand.

COLLECTED ESSAYS

On the Relations of Man to the Lower Animals

Again, the tendons of the long flexor of the toes, and of the long flexor of the great toe, when they reach the sole of the foot, do not remain distinct from one another, as the flexors in the palm of the hand do, but they become united and commingled in a very curious manner-while their united tendons receive an accessory muscle connected with the heel-bone. But perhaps the most absolutely distinctive character about the muscles of the foot is the existence of what is termed the peronmus longus, a long muscle fixed to the outer bone of the leg, and sending its tendon to the outer ankle, behind and below which it passes, and then crosses the foot obliquely to be attached to the base of the great toe. No muscle in the hand exactly corresponds with this, which is eminently a foot muscle. To resume-the foot of man is distinguished from his hand by the following absolute anatomical differences:-

- 1. By the arrangement of the tarsal bones.
- 2. By having a short flexor and a short extensor muscle of the digits.
- 3. By possessing the muscle termed peronaeus longus.

And if we desire to ascertain whether the terminal division of a limb, in other Primates, is to be called a foot or a hand, it is by the presence or absence of these characters that we must be guided, and not by the mere proportions and, greater or lesser mobility of the great toe, which may vary indefinitely without any fundamental alteration in the structure of the foot. Keeping these considerations in mind, let us now turn to the limbs of the Gorilla. The terminal division of the fore limb presents no difficulty-bone for bone and muscle for muscle, are found to be arranged essentially as in man, or with such minor differences as- are found as varieties in man. The Gorilla's hand is clumsier, heavier, and has a thumb somewhat shorter in proportion than that of man; but no one has ever doubted it being a true hand.

At first sight the termination of the hind limb of the Gorilla looks very hand-like, and as it is still more so in many of the lower apes, it is not wonderful that the appellation "Quadrumana," or four-handed creatures, adopted from the older anatomists **6** by Blumenbach, and unfortunately rendered current by Cuvier, should have gained such wide acceptance as a name for the Simian group. But the most cursory anatomical investigation at once proves that the resemblance of the so-called "hind hand" to a true hand, is only skin deep, and that, in all essential respects, the hind limb of the Gorilla is as truly terminated by a foot as that of man. The tarsal bones, in all-important circumstances of number, disposition, and form, resemble those of man.

The metatarsals and digits, on the other hand, are proportionally longer and more slender, while the great toe is not only proportionally shorter and weaker, but its metatarsal bone is united by a more moveable joint with the tarsus. At the same time, the foot is set more obliquely upon the leg than in man. As to the muscles, there is a short flexor, a short extensor, and a peronmus longus, while the tendons of the long flexors of the great toe and of the other toes are united together and with an accessory fleshy bundle. The hind limb of the Gorilla, therefore, ends in a true foot, with a very moveable great toe. It is a prehensile foot, indeed, but is in no sense a hand; it is a foot which differs from that of man not in any fundamental character, but in mere proportions, in the degree of mobility, and in the secondary arrangement of its parts. It must not be supposed, however, because I speak of these differences as not fundamental, that I wish to underrate their value. They are important enough in their way, the structure of the foot being in strict correlation with that of the rest of the organism in each case.

Nor can it be doubted that the greater division of physiological labour in Man, so that the function of support is thrown wholly on the leg and foot, is an advance in organization of very great moment to him; but, after all, regarded anatomically, the resemblances between the foot of Man and the foot of the Gorilla are far more striking and important than the differences. I have dwelt upon this point at length, because it is one regarding which much delusion prevails; but I might have passed it over without detriment to my argument, which only requires me to show that, be the differences between the hand and foot of Man and those of the Gorilla what they may- the differences between those of the Gorilla, and those of the lower Apes are much greater. It is not necessary to descend lower in the scale than the Orang for conclusive evidence on this head. The thumb of the Orang differs more from that of the Gorilla than the thumb of the Gorilla differs from that of Man, not only by its shortness, but by the absence of any special long flexor muscle. The carpus of the Orang, like that of most lower apes, contains nine bones, while in the Gorilla, as in Man and the Chimpanzee, there are only eight.

The Orang's foot is still more aberrant; its very long toes and short tarsus, short great toe, short and raised heel, great obliquity of articulation with the leg, and absence of a long flexor tendon to the great toe, separating it far more widely from the foot of the Gorilla than the latter is separated from that of Man. But, in some of the lower apes, the hand and foot diverge still more from those of the Gorilla, than they do in the Orang. The thumb ceases to be opposable in the American monkeys; is reduced to a mere rudiment covered by the skin in the Spider Monkey; and is directed forwards and armed with a curved claw like the other digits, in the Marmosets-so that, in all these cases, there can be no doubt but that the hand is more different from that of the Gorilla than the Gorilla's hand is from Man's.

And as to the foot, the great toe of the Marmoset is still more insignificant in proportion than that of the Orang-while in the Lemurs it is very large, and as completely thumb-like and opposable as in the Gorillabut in these animals the second toe is often irregularly modified, and in some species the two principal bones of the tarsus, the astragalus and the oscalcis, are so immensely elongated as to render the foot, so far, totally unlike that of any other mammal.

So with regard to the muscles. The short flexor of the toes of the Gorilla differs from that of Man by the circumstance that one slip of the muscle is attached, not to the heel bone, but to the tendons of the long flexors. The lower Pipes depart from the Gorilla by an exaggeration of the same character, two, three, or more, slips becoming fixed to the long flexor tendons-or by a multiplication of the slips-Again, the Gorilla differs slightly from Man in the mode of interlacing of the long flexor tendons: and the lower apes differ from the Gorilla in exhibiting yet other, sometimes very complex, arrangements of the same parts, and occasionally in the absence of the accessory fleshy bundle.

Throughout all these modifications it must be recollected that the foot loses no one of its essential characters. Every monkey and Lemur exhibits the characteristic arrangement of tarsal bones, possesses a short flexor and short extensor muscle, and a peronaeus longus. Varied as the proportions and appearance of the organ may be, the terminal division of the hind limb remains, in plan and principle of construction, a foot, and never, in those respects, can be confounded with a hand. Hardly any part of the bodily frame, then, could be found better calculated to illustrate the truth that the structural differences between Man and the highest Ape are of less value than those between the highest and the lower Apes, than the hand or the foot; and yet, perhaps, there is one organ the study of which enforces the same conclusion in a still more striking manner-and that is the Brain.

But before entering upon the precise question of the amount of difference between the Ape's brain and that of Man, it is necessary that we should clearly understand what constitutes a great, and what a small difference in cerebral structure; and we shall be best enabled to do this by a brief study of the chief modifications which the brain exhibits in the series of vertebrate animals. The brain of a fish is very small, compared with the spinal cord into which it is continued, and with the nerves which come off from it: of the segments of which it is composed, the olfactory lobes, the cerebral hemispheres, and the succeeding divisions-no one predominates so much over the rest as to obscure or cover them; and the so-called optic lobes are, frequently, the largest masses of all. In Reptiles, the mass of the brain, relatively to the spinal cord, increases and the cerebral hemispheres begin to predominate over the other parts; while in Birds this predominance is still more marked. The brain of the lowest Mammals, such as the duck-billed Platypus and the Opossums and Kangaroos, exhibits a still more definite advance in the same direction. The cerebral hemispheres have now so much increased in size as; more or less, to hide the representatives of the optic lobes, which remain comparatively small, so that the brain of a Marsupial is extremely different from that of a Bird, Reptile, or Fish.

A step higher in the scale, among the placental Mammals, the structure of the brain acquires a vast modification -not that it appears much altered externally, in a Rat or in a Rabbit, from what it is in a Marsupial-nor that the proportions of its parts are much changed, but an apparently new structure is found between the cerebral hemispheres, connecting them together, at what is called the "great commissure" or "corpus callosum." The subject requires careful re-investigation, but if the currently received statements are correct, the appearance of the "corpus callosum" in the placental mammals is the greatest and most sudden modification exhibited by the brain in the whole series of vertebrated animals- it is the greatest leap

anywhere made by Nature in her brain work. For the two halves of the brain being once thus knit together, the progress of cerebral complexity is traceable through a complete series of steps from the lowest Rodent, or Insectivore, to Man; and that complexity consists, chiefly, in the disproportionate development of the cerebral hemispheres and of the cerebellum, but especially of the former, in respect to the other parts of the brain. In the lower placental mammals, the cerebral hemispheres leave the proper upper and posterior face of the cerebellum completely visible, when the brain is viewed from above; but, in the higher forms, the hinder part of each hemisphere, separated only by the tentorium from the anterior face of the cerebellum, inclines backwards and downwards, and grows out, as the so-called "posterior lobe," so as at length to overlap and hide the cerebellum.

In all Mammals, each cerebral hemisphere contains a cavity which is termed the "ventricle "; and as this ventricle is prolonged, on the one hand, forwards, and on the other downwards, into the substance of the hemisphere, it is said to have two horns or "cornua," an "anterior cornu," and a "descending cornu." When the posterior lobe is well developed, a third prolongation of the ventricular cavity extends into it, and is called the " posterior cornu." In the lower and smaller forms of placental Mammals the surface of the cerebral hemispheres is either smooth or evenly rounded, or exhibits a very few grooves, which are technically termed "sulci," separating ridges or "convolutions" of the substance of the brain; and the smaller species of all orders tend to a similar smoothness of brain. But, in the higher orders, and especially the larger members of these orders, the grooves, or sulci, become extremely numerous, and the intermediate convolutions proportionately more complicated in their meanderings, until, in the Elephant, the Porpoise, the higher Apes, and Man, the cerebral surface appears a perfect labyrinth of tortuous foldings.

Where a posterior lobe exists and presents its customary cavity-the posterior cornu-it commonly happens that a particular sulcus appears upon the inner and under surface of the lobe, parallel with and beneath the floor of the cornu- which is, as it were, arched over the roof of the sulcus. It is as if the groove had been formed by indenting the floor of the posterior horn from without with a blunt instrument, so that the floor should rise as a convex eminence. Now this eminence is what has been termed the "Hippocampus minor;" the "Hippocampus major" being a larger eminence in the floor of the descending cornu. What may be the functional importance of either of these structures we know not. As if to demonstrate, by a striking example, the impossibility of erecting any cerebral barrier between man and the apes, Nature has provided us, in the latter animals, with an almost complete series of gradations from brains little higher than that of a Rodent, to brains little lower than that of Man. And it is a remarkable circumstance, that though so far as our present knowledge extends, there is one true structural break in the series of forms of Simian brains, this hiatus does not lie between Man and the man-like apes, but between the lower and the lowest Simians; or, in other words, between the old and new world apes and monkeys, and the Lemurs. Every Lemur which has yet been examined, in fact, has its cerebellum partially visible from above, and its posterior lobe, with the contained posterior cornu and hippo-campus minor, more or less rudimentary.

Every Marmoset, American monkey, old world monkey, Baboon, or Man-like ape, on the contrary, has its cerebellum entirely hidden, posteriorly, by the cerabral lobes, and possesses a large posterior cornu, with a well-developed hippocampus minor. In many of these creatures, such as the Saimiri (Ohrysothrix), the cerebral lobes overlap and ex- tend much further behind the' cerebellum, in proportion, than they do in man-and it is quite certain that, in all, the cerebellum is completely covered behind, by well developed posterior lobes. The fact can be verified by every one who possesses the skull of any old or new world monkey. For, inasmuch as the brain in all mammals completely fills the cranial cavity, it is obvious that a cast of the interior of the skull will reproduce the general form of the brain, at any rate with such minute and, for the present purpose, utterly unimportant differences as may result from the absence of the enveloping membranes of the brain in, the dry skull. But if such a cast be made in plaster, and compared with a similar cast of the interior of a human skull, it will be obvious that the cast of the cerebral chamber, representing the cerebrum of the ape, as completely covers over and overlaps the cast of the cerebellar chamber, representing the cerebellum, as it does in the man.

A careless observer, forgetting that a soft structure like the brain loses its proper shape the moment it is taken out of the skull, may indeed mistake the uncovered condition of the cerebellum of an extracted and distorted brain for the natural relations of the parts; but his error must become patent even to himself if he try to replace the brain within the cranial chamber. To suppose that the cerebellum of an ape is naturally

uncovered behind is a miscomprehension comparable only to that of one who should imagine that a man's lungs always occupy but a small portion of the thoracic cavity, because they do so when the chest is opened, and their elasticity is no longer neutralized by the pressure of the air. And the error is the less excusable, as it must become apparent to everyone who examines a section of the skull of any ape above a Lemur, without taking the trouble to make a cast of it.

For there is a very marked groove in every such skull, as in the human skull-which indicates the line of attachment of what is termed the tentorium-a sort of parchment-like shelf, or partition, which, in the recent state, is interposed between the cerebrum and cerebellum, and prevents the former from pressing upon the latter.

This groove, therefore, indicates the line of separation between that part of the cranial cavity which contains the cerebrum, and that which contains the cerebellum; and as the brain exactly fills the cavity of the skull, it is obvious that the relations of these two parts of the cranial cavity at once informs us of the relations of their con- tents. Now in man, in all the old world, and in all the new world Simiae, with one exception, when the face is directed forwards, this line of attachment of the tentorium, or impression for the lateral sinus, as it is technically called, is nearly horizontal, and the cerebral chamber invariably over- laps or projects behind the cerebral chamber. In the Howler Monkey or Mycetes, the line passes obliquely upwards and backwards, and the cerebral overlap is almost nil; while in the Lemurs, as in the lower mammals, the line is much more inclined in the same direction, and the cerebellar chamber projects considerably beyond the cerebral. When the gravest errors respecting points so easily settled as this question respecting the posterior lobes, can be authoritatively propounded, it is no wonder that matters of observation, of no very complex character, but still requiring a certain amount of care, should have fared worse. Any one who cannot see the posterior lobe in an ape's' brain is not likely to give a very valuable opinion respecting the posterior cornu or the hippocampus minor.

If a man cannot see a church, it is preposterous to take his opinion about its altar-piece or painted windowso that I do not feel bound to enter upon any discussion of these points, but content myself with assuring the reader that the posterior cornu and the hippocampus minor, have now been seen-usually, at least as well developed as in man, and often better-not only in the Chimpanzee, the Orang, and the Gibbon, but in all the genera of the old world baboons and monkeys, and in most of the new world forms, including the Marmosets, In fact, all the abundant and trustworthy evidence (consisting of the results of careful investigations directed to the determination of these very questions, by skilled anatomists) which we now possess, leads to the conviction that, so far from the posterior lobe, the posterior cornu, and the hippocampus minor, being structures peculiar to and characteristic of man, as they have been over and over again asserted to be, even after the publication of the clearest demonstration of the reverse, it is precisely these structures which are the most marked cerebral characters common to man with the apes. They are among the most distinctly Simian peculiarities which the human organism exhibits.

As to the convolutions, the brains of the apes exhibit every stage of progress, from the almost smooth brain of the Marmoset, to the Orang and the Chimpanzee, which fall but little below Man. And it is most remarkable that, as soon as all the principal sulci appear, the pattern according to which they are arranged is identical with that of the corresponding sulci of man. The surface of the brain of a monkey exhibits a sort of skeleton map of man's, and in the man-like apes the details become more and more filled in, until it is only in minor characters, such as the greater excavation of the anterior lobes, the constant presence of fissures usually absent in man, and the different disposition and proportions of some convolutions, that the Chimpanzee's or the Orang's brain can be structurally distinguished from Man's. So far as cerebral structure goes, therefore, it is clear that Man differs less from the Chimpanzee or the Orang, than these do even from the Monkeys, and that the difference between the brains of the Chimpanzee and of Man is almost insignificant, when compared with that between the Chimpanzee brain and that of a Lemur.

It must not be overlooked, however, that there is a very striking difference in absolute mass and weight between the lowest human brain and that of the highest ape-a difference which is all the more remarkable when we recollect that a full grown Gorilla is probably pretty nearly twice as heavy as a Bosjesman, or as many an European woman. It may be doubted whether a healthy human adult brain ever weighed less than thirty- one or two ounces, or that the heaviest Gorilla brain has exceeded twenty ounces. This is a very

noteworthy circumstance, and doubtless will one day help to furnish an explanation of the great gulf which intervenes between the lowest man and the highest ape in intellectual power; 7 but it has little systematic value, for the simple reason that, as may be concluded from what has been already said respecting cranial capacity, the difference in weight of brain between the highest and the lowest men is far greater, both relatively and absolutely, than that between the lowest man and the highest ape.

The latter, as has been seen, is represented by, say twelve, ounces of cerebral substance absolutely or by 32 : 20 relatively; but as the largest recorded human brain weighed between 65 and 66 ounces, the former difference is represented by more than 33 ounces absolutely, or by 65 : 32 relatively. Regarded systematically, the cerebral differences of man and apes, are not of more than generic value; his Family distinction resting chiefly on his dentition, lis pelvis, and his lower limbs. Thus, whatever system of organs be studied, the comparison of their modifications in the ape series leads to one and the same result-that the structural differences which separate Man from the Gorilla and the Chimpanzee are not so great as those which separate the Gorilla from the lower apes. But in enunciating this important truth I must guard myself against a form of misunderstanding, which is very prevalent. I find, in fact, that those who endeavour to teach what nature so clearly shows us in this matter, are liable to have their opinions misrepresented and their phraseology garbled, until they seem to say that the structural differences between man and even the highest apes are small and insignificant. Let me take this opportunity then of distinctly asserting, on the contrary, that they are great and significant; that every bone of a Gorilla bears marks by which it might be distinguished from the corresponding bone of a Man; and that, in the present creation, at any rate, no intermediate link bridges over the gap between Homo and Troglodytes.

It would be no less wrong than absurd to deny of the existence of this chasm; but it is at least equally wrong and absurd to exaggerate its magnitude and, resting on the admitted fact of its existence, to refuse to inquire whether it is wide or narrow. Remember, if you will, that there is no existing link between Man and the Gorilla, but do not forget that there is a no less sharp line of demarcation, a no less complete absence of any transitional form, between the Gorilla and the Orang, or the Orang and the Gibbon. I say, not less sharp, though it is somewhat narrower. The structural differences between Man and the Man- like apes certainly justify our regarding him as constituting a family apart from them; though, inasmuch as he differs less from them than they do from other families of the same order, there can be no justification for placing him in a distinct order.

And thus the sagacious foresight of the great lawgiver of systematic zoology, Linnaeus, becomes justified, and a century of anatomical research brings us back to his conclusion, that man is a member of the same order (for which the Linnaean term PRIMATES ought to be retained) as the Apes and Lemurs, This order is now divisible into seven families, of about equal systematic value: the first, the ANTHROPINI, contains Man alone; the second, the CATARHINI, embraces the old world apes; the third, the PLATYRHINI, all new world apes, except the Marmosets; the fourth, the ARCTOPITHECINI, contains the Marmosets; the fifth, the LEMURINI, the Lemurs-from which, Oheiromys should probably be excluded to form a sixth distinct family, the CHEIROMYINI; while the seventh, the GALEOPITHECINI, contains only the flying Lemur Galeopithecus,-a strange form which almost touches on the Bats, as the Oheiromys puts on a Rodent clothing, and the Lemurs simulate Insectivora. Perhaps no order of mammals presents us with so extraordinary a series of gradations as this-leading us insensibly from the crown and summit of the animal creation down to creatures, from which there is but a step, as it seems, to the lowest, smallest, and least intelligent of the placental Mammalia. It is as if nature herself had foreseen the arrogance of man, and with Roman severity had provided that his intellect, by its very triumphs, should call into prominence the slaves, admonishing the conqueror that he is but dust.

These are the chief facts, this is the immediate conclusion from them to which I adverted in the, commencement of this Essay. The facts, I believe, cannot be disputed; and if so, the conclusion appears to me to be inevitable. But if Man be separated by no greater structural barrier from the brutes than they are from one another-then it seems to follow that if any process of physical causation can be discovered by which the genera and families of ordinary animals have been produced, that process of causation is amply sufficient to account for the origin of Man. In other words, if it could be shown that the Marmosets, for example, have arisen by gradual modification of the ordinary Platyrhini, or that both Marmosets and Platyrhini are modified ramifications of a primitive stock-then, there would be no rational ground for

doubting that man might have originated, in the one case, by the gradual modification of a man-like ape; or, in the other case, as a ramification of the same primitive stock as those apes.

At the present moment, but one such process of physical causation has any evidence in its favour; or, in other words, there is but one hypothesis regarding the origin of species of animals in general which has any scientific existence -that propounded by Mr. Darwin. For Lamarck, sagacious as many of his views were, mingled them with so much that was crude and even absurd, as to neutralize the benefit which his originality might have effected, had he been a more sober and cautious thinker; and though I have heard of the announcement of a formula touching "the ordained continuous becoming of organic forms," it is obvious that it is the first duty of a hypothesis to be intelligible, and that a qua-qua-versal proposition of this kind, which may be read backwards, or forwards, or side- ways, with exactly the same amount of signification, does not really exist, though it may seem to do so.

At .the present moment, therefore, the question of the relation of man to the lower animals re- solves itself, in the end, into the larger question of the tenability, or untenability, of Mr. Darwin's views. But here we enter upon difficult ground, and it behooves us to define our exact position with the greatest care. It cannot be doubted, I think, that Mr. Darwin has satisfactorily proved that what he terms selection, or selective modification, must occur, and does occur, in nature; and he has also proved to superfluity that such selection is competent to produce forms as distinct, structurally, as some genera even are. If the animated world presented us with none but structural differences, I should have no hesitation in saying that Mr. Darwin had demonstrated the existence of a true physical cause, amply competent to account for the origin of living species, and of man among the rest.

But, in addition to their structural distinctions, the species of animals and plants, or at least a great number of them, exhibit physiological characters-what are known as distinct species, structurally, being for the most part either altogether incompetent to breed one with another; or if they breed, the resulting mule, or hybrid, is unable to perpetuate its race with another hybrid of the same kind. A true physical cause is, however, admitted to be such only on one condition-that it shall account for all the phenomena which come within the range of its operation. If it is inconsistent with anyone phenomenon, it must be rejected; if it fails to explain anyone phenomenon, it is so far weak, so far to be suspected; though it may have a perfect right to claim provisional acceptance. Now, Mr. Darwin's hypothesis is not, so far as I am aware, inconsistent with any known biological fact; on the contrary, if admitted, the facts of Development of Comparative Anatomy, of Geographical Distribution, and of Paleontology, become connected together, and exhibit a meaning such as they never possessed before; and I, for one, am fully convinced, that if not precisely true, that hypothesis is as near an approximation to the truth as, for example, the Copernican hypothesis was to the true theory of the planetary motions.

But, for all this, our acceptance of the Darwinian hypothesis must be provisional so long as one link in the chain of evidence is wanting; and so long as all the animals and plants certainly produced by selective breeding from a common stock are fertile, and their progeny are fertile with one another, that link will be wanting. For, so long, selective breeding will not be proved to be competent to do all that is required of it to produce natural species. I have put this conclusion as strongly as possible before the reader, because the last position in which I wish to find myself is that of an advocate for Mr. Darwin's, or any other views; if by an advocate is meant one whose business it is to smooth over real difficulties, and to persuade, where he cannot convince. In justice to Mr. Darwin, however, it must be admitted that the conditions of fertility and sterility are very ill understood, and that every day's advance in knowledge leads us to regard the hiatus in his evidence as of less and less importance, when set against the multitude of facts which harmonize with, or receive an explanation from, his doctrines.

I adopt Mr. Darwin's hypothesis, therefore, subject to the production of proof that physiological species may be produced by selective breeding; just as a physical philosopher may accept the undulatory theory of light, subject to the proof of the existence of the hypothetical ether; or as the chemist adopts the atomic theory, subject to the proof of the existence of atoms; and for exactly the same reasons, namely, that it has an immense amount of prima facie probability: that it is the only means at present within reach of reducing the chaos of observed facts to order; and lastly, that it is the most powerful instrument of investigation which has been presented to naturalists since the invention of the natural system of classification, and the

commencement of the systematic study of embryology. But even leaving Mr. Darwin's views aside, the whole analogy of natural operations furnishes so complete and crushing an argument against the intervention of any but what are termed secondary causes, in 'the production of all the phenomena of the universe; that, in view of the intimate relations between Man and the rest of the living world, and between the forces exerted by the latter and all other forces, I can see no excuse for doubting that all are co-ordinated terms of Nature's great progression, from the formless to the formed-from the inorganic to the organic-from blind force to conscious intellect and will. Science has fulfilled her function when she has ascertained and enunciated truth; and were these pages addressed to men of science only, I should now close this Essay, knowing that my colleagues have learned to respect nothing but evidence, and to believe that their highest duty lies in submitting to it, however it may jar against their inclinations.

But, desiring, as I do, to reach the wider circle of the intelligent public, it would be unworthy cowardice were I to ignore the repugnance with which the majority of my readers are likely to meet the conclusions to which the most careful and conscientious study I have been able to give to this matter, has led me. On all sides I shall hear the cry- "We are men and women, not a mere better sort of apes, a little longer in the leg, more compact in the foot, and bigger in brain than your brutal Chimpanzees and Gorillas. The power of knowledge-the conscience of good and evil-the pitiful tenderness of human affections, raise us out of all real fellowship with the brutes, however closely they may seem to approximate us."

To this I can only reply that the exclamation would be most just and would have my own entire sympathy, if it were only relevant. But, it is not I who seek to base Man's dignity upon his great toe, or insinuate that we are lost if an Ape has a hippocampus minor. On the contrary, I have done my best to sweep away this vanity. I have endeavoured to show that no absolute structural line of demarcation, wider than that between the animals which immediately succeed us in the scale, can be drawn between the animal world and ourselves; and I may add the expression of my belief that the attempt to draw a psychical distinction is equally futile, and that even the highest faculties of feeling and of intellect begin to germinate in lower forms of life. 8

At the same time, no one is more strongly convinced than I am of the vastness of the gulf between civilised man and the brutes; or is more certain that whether from them or not, he is assuredly not of them. No one is less disposed to think likely of the present dignity, or despairingly of the future hopes, of the only consciously intelligent denizen of this world. We are indeed told by those who assume authority in these matters, that the two sets of opinions are incompatible, and that the belief in the unity of origin of man and brutes involves the brutalization and degradation of the former. But is this really so? Could not a sensible child confute by obvious arguments, the shallow rhetoricians who would force this conclusion upon us? Is it, in- deed, true, that the Poet, or the Philosopher, or the Artist whose genius is the glory of his age, is degraded from his high estate by the undoubted historical probability, not to say certainty, that he r1 is the direct descendant of some naked and bestial savage, whose intelligence was just sufficient to make him a little more cunning than the Fox, and by so much more dangerous than the Tiger? Or is he bound to howl and grovel on all fours because of the wholly unquestionable fact, that he was once an egg, which no ordinary power of discrimination could distinguish from that of a Dog? Or is the philanthropist, or the saint, to give up his endeavours to lead a noble life, because the simplest study of man's nature reveals, at its foundations, all the selfish passions, and fierce appetites of the merest quadruped? Is mother-love vile because a hen shows it, or fidelity base because dogs possess it?

The common sense of the mass of mankind will answer these questions without a moment's hesitation. Healthy humanity, finding itself hard pressed to escape from real sin and degradation, will leave the brooding over speculative pollution to the cynics and the "righteous over-much" who, disagreeing in everything else, unite in blind insensibility to the nobleness of the visible world, and in inability to appreciate the grandeur of the place Man occupies therein. Nay more, thoughtful men, once escaped from the blinding influences of traditional prejudice, will find in the lowly stock whence Man has sprung, the best evidence of the splendour of his capacities; and will discern in his long progress through the Past, a reasonable ground of faith in his attainment of a nobler Future. They will remember that in comparing civilised man with the animal world, one is as the Alpine traveller, who sees the mountains soaring into the sky and can hardly discern where the deep shadowed crags and roseate peaks end, and where the clouds of heaven begin. Surely the awe struck voyager may be excused if, at first, he refuses to believe the geologist,

who tells him that these glorious masses are, after all, the hardened mud of primeval seas, or the cooled slag of subterranean furnaces-of one substance with the dullest clay, but raised by inward forces to that place of proud and seemingly inaccessible glory. But the geologist is right; and due reflection on his teachings, instead of diminishing our reverence and our wonder, adds all the force of intellectual sublimity to the mere aesthetic intuition of the uninstructed beholder.

And after passion and prejudice have died away, the same result will attend the teachings of the naturalist respecting that great Alps and Andes of the living world-Man. Our reverence for the nobility of manhood will not be lessened by the knowledge that Man is, in substance and in structure, one with the brutes; for, he alone possesses the marvellous endowment of intelligible and rational speech, whereby, in the secular period of his existence, he has slowly accumulated and organised the experience which is almost wholly lost with the cessation of every individual life in other animals; so that, now, he stands raised a mountain top, far above the level of his humble fellows, and transfigured from his grosser nature by reflecting, here and there, a ray from the infinite source of truth.

1. It will be understood that, in the preceding Essay, I have selected for notice from the vast mass of papers which have been written upon the man-like Apes, only those which seem to me to be of special moment.

2. We are not at present thoroughly acquainted with the brain of the Gorilla, and therefore, in discussing cerebral characters, I shall take that of the Chimpanzee as my highest term among the Apes.

3. See the figures of the skeletons of four anthropoid apes and of man, drawn to scale, p. 76.

4. "More than once," says Peter Camper, "have I met with more than six lumbar vertebrae in man. ...Once I found thirteen ribs and four lumbar vertebrae." Fallopius noted thirteen pair of ribs and only four lumbar vertebrae; and Eustachius once found eleven dorsal vertebrae and six lumbar vertebrae. - Euvres de Pierre Camper, T. L, p. 42. As Tyson states, his " Pygmie" had thirteen pair of ribs and five lumbar vertebrae. The question of the curves of the spinal column in the Apes requires further investigation.

5. It has been affirmed that Hindoo crania sometimes contain as little as 27 ounces of water, which would give a capacity of about 46 cubic inches. The minimum capacity which I have assumed above, however, is based upon the valuable tables published by Professor R. Wagner in his Vorstudien zu einer wissenschaftlichen Morphologie und Physiologie des menschlichen Gehrins. As the result of the careful weighing of more than 900 human brains, Professor Wagner states that one-half weighed between 1200 and 1400 grammes, and that about two-ninths, consisting for the most part of male brains, exceed 1400 grammes. The lightest brain of an adult male, with sound mental faculties, recorded by Wagner, weighed 1020 grammes. As a gramme equals 15.4 grains, and a cubic inch of water contains 252.4 grains, this is equivalent to 62 cubic inches of water; so that as brain is heavier than water, we are perfectly safe against erring on the side of diminution in taking this as the smallest capacity of any adult male human brain. The only adult male brain, weighing as little as 970 grammes, is that of an idiot; but the brain of an adult woman, against the soundness of whose faculties nothing appears, weighed as little as 907 grammes (55.3 cubic inches of water); and Reid gives an adult female brain of still smaller capacity. The heaviest brain (1872 grammes, or about 115 cubic inches) was, however, that of a woman; next to it comes the brain of Cuvier (1861 grammes), then Byron (1807 grammes), and then an insane person (1783 grammes). The lightest adult brain recorded (720 grammes) was that of an idiotic female. The brains of five children, four vears old, weighed between 1275 and 992 grammes. So that it may be safely said, that an average European child of four years old has a. brain twice as large as that of an adult Gorilla.

6. In speaking of the foot of his "Pygmie," Tyson remarks, p. 13:- "But this part in the formation and in its function too, being like a Hand than a Foot: for the distinguishing this sort of animals from others, I have thought whether it might not be reckoned and called rather Quad-rumanus than Quadrupes, i. e. a four-handed rather than a four-footed animal." As this passage was published in 1699, M. I. G. St. Hilaire is clearly in error In ascribing the invention of the term "quadrumanous" to Buffon, though "bimanous" may belong to him. Tyson uses "Quadrumanus" in several places, as at p. 91. ..."Our Pygmie is no Man, nor yet

the common Ape, but a sort of Animal between both; and though a Biped, yet of the Quadrumanus-kind: though some Men too have been observed to use their feet like hands as I have seen several."

7. I say help to furnish: for I by no means believe that it was any original difference of cerebral quality, or quantity, which caused that divergence between the human and the pithecoid stirpes, which has ended in the present enormous gulf between them. It is no doubt perfectly true, in a certain sense, that all difference of function is a result of difference of structure; or, in other words, of difference in the combination of the primary molecular forces of living substance; and, starting from this undeniable axiom, objectors occasionally, and with much seeming plausibility, argue that the vast intellectual chasm, between the Ape and Man implies a corresponding structural chasm in the organs of the intellectual functions so that, it is said, the non-discovery of such vast differences proves, not that they are absent, but that Science is incompetent to detect them. A very little consideration, however, will, I think, show the fallacy of this reasoning. Its validity hangs upon the assumption, that intellectual power depends altogether on the brainwhereas the brain is only one condition out of many on which intellectual manifestations depend: the others being, chiefly, the organs of the senses and the motor apparatuses, especially those which are concerned in prehension and in the production of articulate speech. A man born dumb, notwithstanding his great cerebral mass and his inheritance of strong intellectual instincts, would be capable of few higher intellectual manifestations than an Orang or a Chimpanzee, if he were confined to the society of dumb associates. And vet there might not be the slightest discernible difference between his brain and that of a highly intelligent and cultivated person. The dumbness might be the result of a defective innervation of these parts; or it might result from congenital deafness, caused by some minute defect of the internal ear, which only a careful anatomist could discover. The argument, that because there is an immense difference between a Man's intelligence and an Ape's, therefore, there must be an equally immense difference between their brains, appears to me to be about as well based as the reasoning by which one should endeavour to prove that, because there is a "great gulf" between a watch that keeps accurate time and another that will not go at all, there is therefore a great structural hiatus between the two watches. A hair in the balance-wheel, a little rust on a pinion, a bend in a tooth of the escapement, a something so slight that only the practised eye of the watchmaker can discover it, may be the source of all the difference. And believing, as I do, with Cuvier, that the possession of articulate speech is the grand distinctive character of man (whether it be absolutely peculiar to him or not), I find it very easy to comprehend, that some equally inconspicuous structural difference may have been the primary cause of the immeasurable and practically infinite divergence of the Human from the Simian Stirps.

8. It is so rare a pleasure for me to find Professor Owen's opinions in entire accordance with my own, that I cannot forbear from quoting a paragraph which appeared in his Essay" On the Characters, &c., of the Class Mammalia," in the Journal of the Proceedings of the Linnean Society of London for 1857, but is unaccountably omitted in the "Reade Lecture" delivered before the University of Cambridge two years later, which is otherwise nearly a reprint of the paper in question. Prof. Owen writes: "Not being able to appreciate or conceive of the distinction between the psychical phenomena of a Chimpanzee and of a Boschlsman or of an Aztec, with arrested brain growth, as being of a nature so essential as to preclude a comparison between them, or as being other than a difference of degree, I cannot shut my eyes to the significance of that all-pervading similitude of structure- every tooth, every bone, strictly homologous-which makes the determination of the difference between Homo and Pithecus the anatomist's difficulty. Surely it is a little singular, that the" anatomist," who finds it "difficult" to determine "the difference " between Homo and Pithecus, should yet range them on anatomical grounds, in distinct sub-classes.